Donatas Urbonas ir Jonas Miklovas aptaria naujausią Kauno „Žalgirio” pirkinį – Maodo Lo – ir atsako į kitus mūsų BN+ prenumeratorių klausimus. Tai – dalis epizodo, o visą laidą gali matyti „BasketNews.lt“ veiklą BN+ sistemoje remiantys žmonės: https://www.basketnews.lt/plius BN+ TEMOS: - Geriausias turinys šiuo oru; - Kur trečias narys?; - Kokios savijautos po sąskrydžio?; - Jono fotografija iš paryčių; - Ar „Žalgiris” sąmoningai neleidžia atostogauti?; - Kokia Maodo Lo alga?; - Ar taip užsidaro komplektacija?; - Leday karštą vasaros dieną; - Ar buvo pokalbis su GWB dėl Tubelio?; - LKL komandos ir idėja ateičiai; - Prestižinė konferencija; - Kokie podkasto prodiusavimo kaštai?; - Kaip susimovė kolegos; - Kodėl iš „Ryto” nėra gandų?; - BCL tvarkaraščio ypatybės; - Nežinom, apie ką klausimas, bet geras; - Ar „Rytas” gavo išpirką už Tubelį?; - Kokia Gudaičio situacija?; - Kokie Radzo šansai patekti į Eurolygą?; - Kodėl komandoms nebeapsimoka investuoti į jaunimą; - Kas girdėti apie Kasparą Jakučionį?; - Kodėl „Fenerbahče” atsisveikino su McCollumu?; - Kuris vyr. treneriu tapęs asistentas pasirodys geriausiai?; - Kas vyksta „Twinsbet” arenoje?; - Ką Milašius veikė Tauragėje?; - Kodėl NediB nebesigirdi podkastuose?; - Top pašnekovai į „Off the record” podkastą; - Kokia bus „Savo kiemo” sudėtis?; - Ar rusų klubai domisi lietuviais?; - Naujos laidos pasiūlymas; - Kuris 2Pac albumas geriausias?; - Pagarba Kėdainių kraštui. Patinka tai, ką darome? Prisijunkite prie mūsų BN+ platformos ir pasiekite daugiau unikalaus turinio: https://basketnews.lt/plius Nepamirškite sekti mūsų socialiniuose tinkluose: Instagram: https://instagram.com/basketnews.lt Facebook: https://www.facebook.com/basketnews.lt BasketNews.lt e-parduotuvė: https://shop.basketnews.lt
The best Champions League goal by every letter (Part 4) #shorts #footballedits #footy #fc #ucl #championsleague #football #p #q ...
Pata habari motomoto za muziki, burudani, utamaduni, siasa, matukio, habari za kina, na michezo kupitia Wasafi Media. Hii Ni Yetu Sote. https://wasafimedia.co.tz/ 𝑪𝒐𝒑𝒚𝒓𝒊𝒈𝒉𝒕 ©2025 𝑾𝒂𝒔𝒂𝒇𝒊 𝑴𝒆𝒅𝒊𝒂. 𝑨𝒍𝒍 𝒓𝒊𝒈𝒉𝒕𝒔 𝒓𝒆𝒔𝒆𝒓𝒗𝒆𝒅. #wasafi #wasafitv #wasafifm
The Knicks have one year that is a generational opportunity. 2026 No Hali? No Tatum? Knick Brass knows its Championship or ...
#datasportstv #ayotv #mpenjatv #globaltv #datasportstv #michuzitv #azamtv #yangatv #m15tv #simbatv #simbafans #yangafans #wasafitv #daudatv #volortv #manaratv #diamond #feitoto #uchambuzi #ligikuutanzania #timuyawananchi #wenyenchi #simbasc #caf #cafcl #ramadhani #mbwaduke #michezo #africa #nbcsports #azamsports #yangasc #simbasc #salamba #singidabigstarsfc #datasportstv #bonatv #bongo5tv #kidanitv #vimbatv #datasportstv #sokaonline #shutikali #sportsarena #efm #clouds #datasportstv #cloudstv #musonda #azizki #chama #ayomatv #Muro #godlistens #sports #dominick #salamba #Mkalaboko #derby #simbayanga #live #livestreaming
TV TABLE 9-7-2025, 8:50 PM Q-TOUR - SNOOKER CHAMPIONSHIP (2025) KNOCK OUT - ROUND2- BEST OF -7 ALI ...
Knicks Future Starting Two? Hali's Handles;?Thompsons toughness? Lets discuss #knicks #nba #hoop #basketball #sports ...
Ludwig II was King of Bavaria from 1864 until his death in 1886. He is sometimes called the Swan King or der Märchenkönig ("the Fairy Tale King").
In mathematical physics, more specifically the one-dimensional inverse scattering problem, the Marchenko equation , named after Israel Gelfand, Boris Levitan and Vladimir Marchenko, is derived by computing the Fourier transform of the scattering relation: K ( r , r ′ ) + g ( r , r ′ ) + ∫ r ∞ K ( r , r ′ ′ ) g ( r ′ ′ , r ′ ) d r ′ ′ = 0 {\displaystyle K(r,r^{\prime })+g(r,r^{\prime })+\int _{r}^{\infty }K(r,r^{\prime \prime })g(r^{\prime \prime },r^{\prime })\mathrm {d} r^{\prime \prime }=0} Where g ( r , r ′ ) {\displaystyle g(r,r^{\prime })\,} is a symmetric kernel, such that g ( r , r ′ ) = g ( r ′ , r ) , {\displaystyle g(r,r^{\prime })=g(r^{\prime },r),\,} which is computed from the scattering data. Solving the Marchenko equation, one obtains the kernel of the transformation operator K ( r , r ′ ) {\displaystyle K(r,r^{\prime })} from which the potential can be read off.
Marchenko and Martchenko is a Ukrainian surname of the following people:
Marchenoir is a commune in the Loir-et-Cher department of central France. The nearby forest of Marchenoir was the site of L'Aumône Abbey, a Cistercian daughter house of Cîteaux Abbey.
In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Ukrainian mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967.
Halysidota tessellaris, also called the pale tiger moth, banded tussock moth, and tessellated halisidota, is in the family Erebidae and the tribe Arctiini, the tiger moths. The species was first described by James Edward Smith in 1797.
Halysidota is a genus of moths in the family Erebidae. The genus was erected by Jacob Hübner in 1820.
Halysidota harrisii, the sycamore tussock moth, is a species of moth of the family Erebidae and the tribe Arctiini, the tiger moths. The species was first described by Benjamin Dann Walsh in 1864.
Halysites is an extinct genus of tabulate coral. Colonies range from less than one to tens of centimeters in diameter, and they fed upon plankton.These tabulate corals lived from Ordovician to Silurian (from 449.5 to 412.3 Ma).
Halystina globulus is a species of sea snail, a marine gastropod mollusk in the family Seguenziidae.
Halystina is a genus of sea snails, marine gastropod mollusks in the family Seguenziidae.
Halysidota cinctipes, the gartered halysidota or Florida tussock moth, is a species of moth in the family Erebidae. It was described by Augustus Radcliffe Grote in 1865.
Halysidota davisii, or Davis' tussock moth, is a species of moth in the family Erebidae. It was described by Henry Edwards in 1874.