A brief glimpse into the past

ERC Sonthofen | Pressekonferenz Bulls vs. EHC Klostersee
ERC Sonthofen | Pressekonferenz Bulls vs. EHC Klostersee

Endstand 9:5 https://www.facebook.com/ercsonthofen/ http://www.erc-sonthofen.de/

ERC Sonthofen | Pressekonferenz Bulls vs. Passau
ERC Sonthofen | Pressekonferenz Bulls vs. Passau

Endstand 3:0 https://www.facebook.com/ercsonthofen/ http://www.erc-sonthofen.de/

ERC Sonthofen | Pressekonferenz Bulls vs. EHC Waldkraiburg
ERC Sonthofen | Pressekonferenz Bulls vs. EHC Waldkraiburg

Endstand 6:2 https://www.facebook.com/ercsonthofen/ http://www.erc-sonthofen.de/

ERC Sonthofen | Pressekonferenz Bulls vs. HC Landsberg
ERC Sonthofen | Pressekonferenz Bulls vs. HC Landsberg

Endstand 6:1 https://www.facebook.com/ercsonthofen/ http://www.erc-sonthofen.de/

S19/20 | Highlights: EHC Waldkraiburg Vs. ERC Sonthofen
S19/20 | Highlights: EHC Waldkraiburg Vs. ERC Sonthofen

Nach diesem Spiel gegen die Bulls vom ERC Sonthofen hätten die Löwen durchaus Punkte verdient. Nehmt doch diese Klasse Leistung einfach zum Anlass ...

ERC Sonthofen | Pressekonferenz Bulls vs. TEV Miesbach
ERC Sonthofen | Pressekonferenz Bulls vs. TEV Miesbach

Endstand 3:1 https://www.facebook.com/ercsonthofen/ http://www.erc-sonthofen.de/

Verzahnungsrunde OL Süd/Bayernliga 19/20 2.SP ERC Sonthofen - Erding Gladiators
Verzahnungsrunde OL Süd/Bayernliga 19/20 2.SP ERC Sonthofen - Erding Gladiators

Verzahnungsrunde OL Süd/Bayernliga 19/20 2.Spieltag ERC Sonthofen - Erding Gladiators 6:0 Eissporthalle Sonthofen 650 Zuschauer.

Team, Place & City Details

Selberg trace formula

In mathematics, the Selberg trace formula, introduced by Selberg , is an expression for the character of the unitary representation of G on the space L2(G/Γ) of square-integrable functions, where G is a Lie group and Γ a cofinite discrete group. The character is given by the trace of certain functions on G. The simplest case is when Γ is cocompact, when the representation breaks up into discrete summands.

Selberg class

In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions.

Selberg zeta function

The Selberg zeta-function was introduced by Atle Selberg . It is analogous to the famous Riemann zeta function ζ ( s ) = ∏ p ∈ P 1 1 − p − s {\displaystyle \zeta (s)=\prod _{p\in \mathbb {P} }{\frac {1}{1-p^{-s}}}} where P {\displaystyle \mathbb {P} } is the set of prime numbers.

Selberg integral

In mathematics the Selberg integral is a generalization of Euler beta function to n dimensions introduced by Atle Selberg .

Selberg sieve
Selberg sieve

In mathematics, in the field of number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s.

Selberg's zeta function conjecture

In mathematics, the Selberg conjecture, named after Atle Selberg, is a theorem about the density of zeros of the Riemann zeta function ζ. It is known that the function has infinitely many zeroes on this line in the complex plane: the point at issue is how densely they are clustered.

Selberg's 1/4 conjecture

In mathematics, Selberg's conjecture, conjectured by Selberg , states that the eigenvalues of the Laplace operator on Maass wave forms of congruence subgroups are at least 1/4.

Selberg's identity

In number theory, Selberg's identity is an approximate identity involving logarithms of primes found by Selberg . Selberg and Erdős both used this identity to given elementary proofs of the prime number theorem.

Selberg (Kusel)
Selberg (Kusel)

The Selberg is a hill, 545.1 m, in the county of Kusel in the German state of Rhineland-Palatinate. It is part of the North Palatine Uplands and is a southern outlier of the Königsberg.