Players of the Game Aaron Judge - 2 - 4, 2 HR, BB, 4 RBI, 3 R Cody Bellinger - 3 - 5, HR, 2B, 3 RBI, 3 R Jazz Chisholm Jr. - 2 - 4, ...
Players of the Game Vinnie Pasquantino - 2 - 4, HR, 2B, 5 RBI, 2 R Freddie Freeman - 3 - 3, HR, 2 BB, RBI, 2 R Jonathan India - 4 ...
October 6, 1995 - American League Division Series Game 3 - New York Yankees at Seattle Mariners - R. Johnson -- W , 7 IP , 10 ...
Players of the Game Max Muncy - 1 - 3, HR, BB, 2 RBI, R Kyle Isbel - 2 - 3, 2 2B, RBI, R Shohei Ohtani - 2 - 3, HR, 3B, BB, 2 RBI, ...
Disfruta el Desafío Internacional por #DisneyPlus ingresando a este link: http://dis.la/ESPNenDisneyPlus_YT Desafío Internacional Amistoso Goles: 42' A. Fernández (R); 46' B. Zuculini (R); 66' S. Ferreira (O); 82' B. Zuculini (R); 90' R. Degregorio (R). ¿Ya te suscribiste a nuestro canal?: http://bit.ly/3ppZdsI Para más información, visita http://www.espn.com No te olvides de seguirnos en TODAS las redes: - https://www.instagram.com/espnargentina/ - https://www.facebook.com/ESPNFans - https://x.com/ESPNArgentina
Here's today's starting lineup versus Blue Jays: Toronto Addison Barger (L) 3B Vladimir Guerrero Jr. (R) DH Alejandro Kirk (R) C ...
สื่อนอกวิเคราะห์! เปิดศึกเมื่อไหร่เขมรแพ้ไทยแน่ . สถานการณ์ตึงเครียดระหว่างไทยกับกัมพูชากำลังกลายเป็นประเด็นใหญ่ที่ทั่วโลกจับตามอง เมื่อสื่อต่างประเทศออกมาวิเคราะห์อย่างหนักแน่นว่า “กัมพูชาเสี่ยงนำพาตัวเองเข้าสู่สงคราม” แม้จะรู้อยู่แก่ใจว่าหากปะทะจริง ไทยมีศักยภาพเหนือกว่าทุกด้าน ไม่ว่าจะเป็นด้านการทหาร เศรษฐกิจ หรือการสนับสนุนจากประชาคมโลก Up Comment มีโปรแกรมสมัครสมาชิกช่อง เพียงเดือนละ 20 บาท เพื่อเป็นการสนับสนุนการทำงานของช่อง หรือเพื่อนๆสามารถสนับสนุนช่องด้วย SuperThanks หรือคลิกลิงค์เพื่อเลือกซื้อสินค้ากันได้ตามสะดวกเลยนะครับ แหล่งที่มาข้อมูลและความคิดเห็น https://www.washingtonpost.com/opinions/2025/06/17/thailand-cambodia-border-disputeasean-hun-manet-paetongtarn/?utm_source=chatgpt.com https://time.com/7294994/thailand-cambodia-border-dispute-hun-sen-thaksin-paetongtarn-history-explainer/?utm_source=chatgpt.com https://www.reuters.com/world/asia-pacific/thousands-cambodians-join-government-rally-border-dispute-with-thailand-2025-06-18/?utm_source=chatgpt.com https://time.com/7294994/thailand-cambodia-border-dispute-hun-sen-thaksin-paetongtarn-history-explainer/?utm_source=chatgpt.com https://apnews.com/article/cambodial-thailand-border-conflict-explainer-6a897419733edb91a76fffa31d4aba15 https://www.reuters.com/world/asia-pacific/thailand-cambodia-seek-ease-simmering-border-tensions-2025-06-14/?utm_source https://jen.jiji.com/jc/eng_agt?g=nation&k=20250607NATION-40050940&utm_source=chatgpt.com https://lansinginstitute.org/2025/06/09/rising-tensions-between-thailand-and-cambodia-causes-scenarios-consequences-and-foreign-interests/?utm_source=chatgpt.com https://apnews.com/article/cambodia-thailand-border-court-preah-vihear-dispute-5ae4ab04f3abb52d7ee614438bdbd83c https://www.theguardian.com/world/2025/jun/24/thailand-army-closes-cambodia-border-crossings-as-territorial-tensions-escalate-paetongtarn-shinawatra-hun-sen?utm_source=chatgpt.com https://www.reuters.com/world/asia-pacific/thai-military-prepared-high-level-operation-if-cambodia-border-row-escalates-2025-06-06/?utm_source=chatgpt.com https://www.globalfirepower.com/countries-comparison-detail.php?country1=Cambodia&country2=Thailand&utm_source=chatgpt.com https://apnews.com/article/cambodia-thailand-border-tensions-c6c983fac5d9d382f292f0aa743b4743 https://www.reddit.com/r/cambodia/comments/1hzzu8j/why_has_cambodia_struggled_to_thrive_politically/ https://www.reddit.com/r/Thailand/comments/1l4t6kp/things_starting_to_get_very_serious_on_the/ https://www.reddit.com/r/Thailand/comments/1l4o6s5/what_is_the_situation_on_thaicambodian_border/ #ไทยกัมพูชา #สื่อนอกวิเคราะห์ #ชายแดนเดือด #ข่าวต่างประเทศ #อัพคอมเม้น #วิเคราะห์การเมือง #สงครามชายแดน #ข่าวร้อนล่าสุด #CambodiaThailand #UpComment
R. Praggnanandhaa entered this game with a score of 4.5/8. His opponent Nodirbek Abdusattorov not only had a full point lead but also had the white pieces in this game. It was clear that Pragg had to win on demand with black. Not at all easy. But he tried. And what happened next? Check out this game along with the commentary by IM Sagar Shah. Video: ChessBase India Edited by Ravindra Potawad #Chess #ChessBaseIndia #praggnanandhaa #nodirbekabdusattorov ------------------------------------------------------------------------------------------------------------- ◾Support young talents via HelpChess Foundation: https://helpchess.org/ ◾Review us on Google: https://g.page/r/CZ5T1PaLM-7WEBE/review ◾Chess Shop: https://chessbase.in/online-shop/ ◾ChessBase India on amazon: https://amzn.to/2vv0XXy ◾Contact us: http://chessbase.in/contact Most important links of ChessBase India: https://linktr.ee/chessbaseindia
Ludwig II was King of Bavaria from 1864 until his death in 1886. He is sometimes called the Swan King or der Märchenkönig ("the Fairy Tale King").
In mathematical physics, more specifically the one-dimensional inverse scattering problem, the Marchenko equation , named after Israel Gelfand, Boris Levitan and Vladimir Marchenko, is derived by computing the Fourier transform of the scattering relation: K ( r , r ′ ) + g ( r , r ′ ) + ∫ r ∞ K ( r , r ′ ′ ) g ( r ′ ′ , r ′ ) d r ′ ′ = 0 {\displaystyle K(r,r^{\prime })+g(r,r^{\prime })+\int _{r}^{\infty }K(r,r^{\prime \prime })g(r^{\prime \prime },r^{\prime })\mathrm {d} r^{\prime \prime }=0} Where g ( r , r ′ ) {\displaystyle g(r,r^{\prime })\,} is a symmetric kernel, such that g ( r , r ′ ) = g ( r ′ , r ) , {\displaystyle g(r,r^{\prime })=g(r^{\prime },r),\,} which is computed from the scattering data. Solving the Marchenko equation, one obtains the kernel of the transformation operator K ( r , r ′ ) {\displaystyle K(r,r^{\prime })} from which the potential can be read off.
Marchenko and Martchenko is a Ukrainian surname of the following people:
Marchenoir is a commune in the Loir-et-Cher department of central France. The nearby forest of Marchenoir was the site of L'Aumône Abbey, a Cistercian daughter house of Cîteaux Abbey.
In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Ukrainian mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967.