A brief glimpse into the past

Die Niederlage im Penaltyschießen im zweiten Duell um die Oberliga-Meisterschaft? "Abgehakt, wir sind bereit für Spiel drei", verspricht Coach #Stolikowski, der heute (20 Uhr) zu Hause mit den #Scorpions gegen die Selber Wölfe wieder vorlegen will. 👉

Die Niederlage im Penaltyschießen im zweiten Duell um die Oberliga-Meisterschaft? "Abgehakt, wir sind bereit für Spiel drei", verspricht Coach #Stolikowski, der heute (20 Uhr) zu Hause mit den #Scorpions gegen die Selber Wölfe wieder vorlegen will. 👉



Playoff-Halbfinale 5.Spiel Selber Wölfe - Starbulls Rosenheim
Playoff-Halbfinale 5.Spiel Selber Wölfe - Starbulls Rosenheim

11.04.2021 - 17:00 Uhr (Endstand: 2:0) Eishockey Oberliga | Playoff-Halbfinale Spiel 5.



Selber Wölfe - Starbulls Rosenheim: Die Pressekonferenz nach dem Spiel 11.04.2021
Selber Wölfe - Starbulls Rosenheim: Die Pressekonferenz nach dem Spiel 11.04.2021

Aus technischen Gründen diesmal nur als Audio: die Stimmen beider Trainer zum Spiel, welches die Selber Wölfe mit 2:0 gewonnen haben und somit nun im ...



Playoff-Halbfinale 3.Spiel Selber Wölfe - Starbulls Rosenheim
Playoff-Halbfinale 3.Spiel Selber Wölfe - Starbulls Rosenheim

07.04.2021 - 19:30 Uhr (Endstand: 3:2) Eishockey Oberliga | Playoff-Halbfinale Spiel 3.



Die Starbulls Rosenheim verlieren das dritte Spiel der Playoff-Halbfinalserie der Eishockey-Oberliga Süd gegen die Selber Wölfe am Mittwochabend knapp mit 2:3. Fehlende Effektivität im Überzahlspiel und eine schwache Chancenverwertung sind die

Die Starbulls Rosenheim verlieren das dritte Spiel der Playoff-Halbfinalserie der Eishockey-Oberliga Süd gegen die Selber Wölfe am Mittwochabend knapp mit 2:3. Fehlende Effektivität im Überzahlspiel und eine schwache Chancenverwertung sind die



Playoff-Halbfinale 2.Spiel Starbulls Rosenheim - Selber Wölfe
Playoff-Halbfinale 2.Spiel Starbulls Rosenheim - Selber Wölfe

05.04.2021 - 17:00 Uhr (Endstand: 2:5) Eishockey Oberliga | Playoff-Halbfinale Spiel 2.



Playoff-Halbfinale 1.Spiel Selber Wölfe - Starbulls Rosenheim
Playoff-Halbfinale 1.Spiel Selber Wölfe - Starbulls Rosenheim

03.04.2021 - 19:30 Uhr (Endstand: 3:4 n.V.) Eishockey Oberliga | Playoff-Halbfinale Spiel 1.



Team, Place & City Details

Selberg trace formula

In mathematics, the Selberg trace formula, introduced by Selberg , is an expression for the character of the unitary representation of G on the space L2(G/Γ) of square-integrable functions, where G is a Lie group and Γ a cofinite discrete group. The character is given by the trace of certain functions on G. The simplest case is when Γ is cocompact, when the representation breaks up into discrete summands.

Selberg class

In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions.

Selberg zeta function

The Selberg zeta-function was introduced by Atle Selberg . It is analogous to the famous Riemann zeta function ζ ( s ) = ∏ p ∈ P 1 1 − p − s {\displaystyle \zeta (s)=\prod _{p\in \mathbb {P} }{\frac {1}{1-p^{-s}}}} where P {\displaystyle \mathbb {P} } is the set of prime numbers.

Selberg integral

In mathematics the Selberg integral is a generalization of Euler beta function to n dimensions introduced by Atle Selberg .

Selberg sieve
Selberg sieve

In mathematics, in the field of number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s.

Selberg's zeta function conjecture

In mathematics, the Selberg conjecture, named after Atle Selberg, is a theorem about the density of zeros of the Riemann zeta function ζ. It is known that the function has infinitely many zeroes on this line in the complex plane: the point at issue is how densely they are clustered.

Selberg's 1/4 conjecture

In mathematics, Selberg's conjecture, conjectured by Selberg , states that the eigenvalues of the Laplace operator on Maass wave forms of congruence subgroups are at least 1/4.

Selberg's identity

In number theory, Selberg's identity is an approximate identity involving logarithms of primes found by Selberg . Selberg and Erdős both used this identity to given elementary proofs of the prime number theorem.

Selberg (Kusel)
Selberg (Kusel)

The Selberg is a hill, 545.1 m, in the county of Kusel in the German state of Rhineland-Palatinate. It is part of the North Palatine Uplands and is a southern outlier of the Königsberg.

Riemann hypothesis
Riemann hypothesis

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. It was proposed by Bernhard Riemann , after whom it is named.

Lindau
Lindau

Lindau , also Lindau im Bodensee and Lindau am Bodensee; German: [ˈlɪndaʊ̯] (listen)) is a major town and island on the eastern side of Lake Constance (Bodensee in German) in Bavaria, Germany. It is the capital of the county (Landkreis) of Lindau, Bavaria and is near the borders of the Austrian state of Vorarlberg and the Swiss cantons of St.

Lindau (district)

Lindau is a Landkreis in Swabia, Bavaria, Germany; its capital is the city of Lindau. It is bounded by (from the east and clockwise) the district of Oberallgäu, Austria (federal state of Vorarlberg), Lake Constance and the state of Baden-Württemberg (districts of Bodensee and Ravensburg).

Lindau, Switzerland
Lindau, Switzerland

Lindau is a municipality in the district of Pfäffikon in the canton of Zürich in Switzerland.